Aladdin magic mat: non-printed integrated-circuit textile for wireless theranostics

We develop a self-powered non-printed integrated-circuit textile (NIT) for potential applications as a 24/7 private AI “nurse” for routine health monitoring, emergency alert and even COVID-19 patient care, on-body AI hardware, and possibly a forerunner to fabric-like computers.
Aladdin magic mat: non-printed integrated-circuit textile for wireless theranostics
Like

We develop a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method.(https://doi.org/10.1038/s41467-021-25075-8) All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI “nurse” for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.

Fig. 1: The design of the non-printed integrated-circuit textile.
Fig. 1: The design of the non-printed integrated-circuit textile.

Fig. 2: The performance of the logical operation module.
Fig. 2: The performance of the logical operation module.

a The device structure of the woven transistor unit in a logical operation circuit. b Electric characteristics of a woven transistor unit. c Transfer characteristics of a woven transistor unit. d The on/off ratio of the transistor based on different substrates. e The on/off ratio of the woven transistor unit with different diethylene glycol ratio in the PEDOT: PSS layer. Insert is the cyclic voltammetry scanning between the gate electrode and the source electrode for PEDOT:PSS layer with different compositions. f The on/off ratio of the fabric-type transistor with different channel distance. g the logic circuit design for AND gate, OR gate, AND-OR gate. h The logic function characteristics of the three types of logic gates.

Fig. 3: The performance of the sensor module.
Fig. 3: The performance of the sensor module.

Fig. 4: Performance of the textile-type power modules.
Fig. 4: Performance of the textile-type power modules.

The performance of textile-type photovoltaic (a) /battery (b) module connected in series vs in parallel. c The photo-charge and dark-discharge performance by integrated textile-type photo-charging power modules. d The power consumption of different sensors without or with stimulation. e The power consumption at different stimulations in night-time or day-time: A. no stimulation, B. body moving, C. sweating. (f) The fabric data-sending performance at various bending angles.

Fig. 5: Function verification of a prototype for both wireless data-sending and emergency alarms.
Fig. 5: Function verification of a prototype for both wireless data-sending and emergency alarms.

All the devices, including transistors, sensors, diodes, solar cells, and batteries were assembled along polymer wires or at their cross-nodes and then integrated as IC function modules for sensing, signals amplifying, logic computing, wireless transmission, and uninterrupted power supply into a cloth-like system by textile weaving. With no external power or signal cable connection, this single piece of fabric is tender and comfortable and can monitor routine healthcare tasks continuously around the clock and encode logical codes for emergency assistance.

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-25075-8/MediaObjects/41467_2021_25075_MOESM2_ESM.avi

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-25075-8/MediaObjects/41467_2021_25075_MOESM3_ESM.avi

Related reading:https://orcid.org/0000-0001-7114-1095  

https://www.nature.com/articles/s41467-021-25075-8

https://www.nature.com/articles/s41467-021-24961-5

https://www.nature.com/articles/s41467-021-21436-5  

https://www.nature.com/articles/s41578-020-00247-y 

https://www.nature.com/articles/s41467-019-12462-5

https://bioengineeringcommunity.nature.com/posts/tackling-covid-19-with-materials-science  https://bioengineeringcommunity.nature.com/posts/micropatterned-microfluidics-dendronized-fluorosurfactants-for-highly-stable-emulsions https://bioengineeringcommunity.nature.com/posts/nature-derived-2-dimensional-materials-for-cancer-therapy-and-sustainable-solutions https://bioengineeringcommunity.nature.com/posts/multi-targeted-reactive-oxygen-species-burst-for-cancer-therapy

https://bioengineeringcommunity.nature.com/posts/aladdin-magic-mat-non-printed-integrated-circuit-textile-for-wireless-theranostics

Related Cancer Theranostics works:

  1. D Gao, T Chen, Y Han, S Chen, Y Wang, X Guo, H Wang, X Chen, M Guo, Y Zhang, G Hong, X Zhang*, Z Tian*, Z Yang*. Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-independent Synergistic Photothermal-thermodynamic Therapy. Nano-Micro Letters, 2021,13, 99. (Featured Cover Paper)
  2. Y Yang, X Wei, N Zhang*, J Zheng, Q Wen, X Luo, C Lee, X Liu, X Zhang*, J Chen, C Tao, W Zhang*, X Fan*. A non-printed integrated-circuit textile for wireless theranostics. Nature Communications. 2021, 12, 4876.
  3. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong,* X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 1124.
  4. N Kong, H Zhang, C Feng, C Liu, Y Xiao, X Zhang, L Mei, J S Kim, W Tao, X Ji. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nature Communications. 2021, 12, 4777.
  5. Z Tang†, N Kong†, X. Zhang†, Y Liu, P Hu, S Mou, P Liljeström, J Shi, W Tan, J S Kim, Y Cao, R Langer,  K W. Leong, O C. Farokhzad, W Tao. A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860. (Featured Cover Paper, highly cited paper, accessed>20,000 times) 
  6. Y Wang, D Gao, Y Liu, X Guo, S Chen, L Zeng, J Ma, X Zhang*, Z Tian*, Z Yang*. Immunogenic-Cell-Killing and Immunosuppression-Inhibiting Nanomedicine. Bioactive Materials, 2020, 6 (6), 1513-1527.
  7. J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Progress in Materials Science, 2021, 118, 100768.
  8. Z Yang, D Gao, X Guo, L Jin, J Zhang, Y Wang, S Chen, X Zheng, L Zeng, M Guo, X Zhang*, Z Tian*. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged ACS Nano, 2020, 14, 12, 17442-17457.
  9. D Wei, Y Yu, Y Huang,1 Y Jiang, Y Zhao, Z Nie, F Wang, W Ma, Z Yu, Y Huang, X Zhang, Z Liu, X Zhang, H Xiao. A Near-Infrared-II Polymer with Tandem Fluophores Demonstrates Superior Biodegradability for Simultaneous Drug Tracking and Treatment Efficacy Feedback. ACS Nano, 2021, 15 (3), 5428–5438.
  10. D Wei, Y Yu, X Zhang, Y Wang, H Chen, Y Zhao, F Wang, G Rong, W Wang, X Kang, J Cai, Z Wang, J Yin, M Hanif, Y Sun, G Zha, L Li, G Nie, H Xiao*. Breaking down the intracellular redox balance with diselenium nanoparticles for maximizing chemotherapy efficacy on patient-derived xenograft models. ACS Nano, 2020, 14, 12, 16984-16996.
  11. Z Lei, W Zhu, X Zhang, X Wang, P Wu. Bio-inspired ionic skin for theranostics hydrogel. Advanced Functional Materials, 2020, 2008020.
  12. D Gao, X Guo, X Zhang*, S Chen, Y Wang, T Chen, G Huang, Y Gao, Z Tian*, Z Yang*. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Materials Today Bio. 2019, 5,100035. (Invited Paper, ESI highly cited paper, open access with a fee waiver, 99.983% excellence, 2nd most highly cited paper of Materials Today Bio)
  13. J Ouyang†, X Ji†, X Zhang†, C Feng, Z Tang, N Kong, A Xie, J Wang, X Sui, L Deng, Y Liu, J S Kim, Y Cao, W Tao*. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2020, 117 (46), 28667-28677. (highly cited paper, Highlighted by: MRS Bulletin Materials News)
  14. G Parekh, Y Shi, J Zheng, X Zhang*, S Leporatti. Nano-carriers for targeted delivery and biomedical imaging enhancement. Therapeutic Delivery, 2018, 9(6), 451-468.
  15.  C Liu, S Sun, Q Feng, Y Wu, N Kong, Z Yu, J Yao, X Zhang, W Chen, Z Tang,  Y Xiao, X Huang, A Lv, Y Cao, A Wu, T Xie, W Tao. Arsenene nanodot: a new-concept arsenical drug with selective killing effects for solid tumor therapy. Advanced Materials, 2021, 2102054
  16. W Y Kim, M Won, S Koo, X Zhang, J S Kim. Mitochondrial H2Sn-Mediated Anti-Inflammatory Theranostics. Nano-Micro Letters,  2021, 13, 168.

Other Related Nature-derived/inspired materials/tea works:

  1.  C Liu, S Sun, Q Feng, Y Wu, N Kong, Z Yu, J Yao, X Zhang, W Chen, Z Tang,  Y Xiao, X Huang, A Lv, Y Cao, A Wu, T Xie, W Tao. Arsenene nanodot: a new-concept arsenical drug with selective killing effects for solid tumor therapy. Advanced Materials. 2021, 2102054
  2. Y Xie, J Yin, J Zheng, L Wang, J Wu, M Dresselhaus, X Zhang*. Synergistic cobalt sulfide/eggshell membrane carbon ACS Applied Materials & Interfaces. 2019, 11 (35), 32244-32250.
  3. N Kong, H Zhang, C Feng, C Liu, Y Xiao, X Zhang, L Mei, J S Kim, W Tao, X Ji. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nature Communications. 2021, 12, 4777.
  4. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021,12,1124.
  5. Z Li, D Chu, Y Gao, L Jin*, X Zhang*, W Cui, J Li*. Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite Materials Today Advances. 2019,3,100014. (Invited open-access paper among most highly cited paper of Materials Today Advances)
  6. Z Lei, W Zhu, X Zhang, X Wang, P Wu. Bio-inspired ionic skin for theranostics hydrogel. Advanced Functional Materials, 2020, 2008020.
  7. L Jin, J Li, L Liu*, Z Wang*, X Zhang*. Facile synthesis of carbon dots with superior sensing. Applied Nanoscience, 2018, 755(3), 1-8.
  8. J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Progress in Materials Science, 2021, 118, 100768.
  9. Z Yang, D Gao, X Guo, L Jin, J Zhang, Y Wang, S Chen, X Zheng, L Zeng, M Guo, X Zhang*, Z Tian*. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged ACS Nano, 2020, 14, 12, 17442-17457.
  10. Y Wang, L Lu, G Zheng*, X Zhang*. Microenvironment-controlled micropatterned microfluidic model for biomimetic in-situ studies. ACS Nano, 2020, 14(8), 9861-9872. (Featured Cover Paper)
  11. Z Li†, X Zhang†, Z Guo, L Shi, L Jin, L Zhu, X Cai, J Zhang, Y Liu, Y Zhang, J Li. Nature-Derived Bionanomaterials for sustained release of 5-fluorouracil to inhibit subconjunctival fibrosis. Materials Today Advances, 2021, 11, 100150.  
  12. X Chen, Y Chen, L Zou, X Zhang, Y Dong, J Tang, D McClements, W Liu. Plant-based Nanoparticles Consisting of a Protein Core and Multilayer Phospholipid Shell: Fabrication, Stability, and  Journal of Agricultural and Food Chemistry, 2019, 67 (23), 6574-6584.
  13. P Tang, D Shen, Y Xu, X Zhang*, J Shi, J Yin*. Effect of fermentation conditions and the tenderness of tea leaves on the chemical components and sensory quality of fermented juice. Journal of Chemistry, 2018, 4312875,1-7.
  14. X Zhang*. Tea and cancer prevention. Journal of Cancer Research Updates, 2015, 4 (2), 65-73.
  15. Q Zhang, W Li, K Li, H Nan, C Shi, Y Zhang, Z Dai, Y Lin, X Yang, Y Tong, D Zhang, C Lu, L Feng, C Wang, X Liu, J Huang, W Jiang, X Wang, X Zhang, Eichler, Z. Liu, L. Gao. The Chromosome-Level Reference Genome of Tea Tree Unveils Recent Bursts of Non-autonomous LTR Retrotransposons in Driving Genome Size Evolution. Molecular plant 2020,13 (7), 935-938.
  16. Y Yang†, P Jin†, X Zhang†, N Ravichandran, H Ying, C Yu, H Ying, Y Xu, J Yin, K Wang, M Wu, Q New epigallocatechin gallate (EGCG) nanocomplexes co-assembled with 3-mercapto-1-hexanol and ß- lactoglobulin for improvement of antitumor activity. Journal of Biomedical Nanotechnology, 2017,13 (7), 805-814.
  17. X Zhang*, G Parekh, B Guo, X Huang, Y Dong, W Han, X Chen, G Polyphenol and Self-Assembly: Metal Polyphenol Nanonetwork for Drug Delivery and Biomedical Applications. Future Drug Discovery, 2019, 1 (1), FDD7. (Invited open-access paper with a fee waiver, most cited paper of the journal)

Related 2-dimentional/carbon materials works:

  1. Y Zheng, H Wei, P Liang, X Xu, X Zhang, H Li, C Zhang, C Hu, X Zhang, B Lei, W Wong, Y Liu, J Zhuang. Near-infrared-excited multicolor afterglow in carbon dots-based room-temperature phosphorescent materials. Angewandte Chemie, 2021, 202108696.  
  2. G Li, C Liu, X Zhang, P Luo, G Lin, W Jiang. Highly photoluminescent carbon dots-based immunosensors for ultrasensitive detection of aflatoxin M1 residues in milk. Food Chemistry. 2021, 355, 129443.
  3. L Jin, X Guo, D Gao, G Tan, N Du, X Wang, Y Zhang, Z Yang*, X Zhang*. NIR-responsive MXene nanobelts for wound NPG Asia Materials. 2021,13, 24. Selected for the “Special Issue on Biomaterials and Health-care related Materials”.
  4. J Meng, J Li, J Liu, X Zhang*, G Jiang*, L Ma, Z Hu, S Xi, Y Zhao, M Yan, P Wang, X Liu, Q Li, J Liu, T Wu, L Mai*. Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from  Doped ZnO  Solid ACS Central Science, 2020, 6(8), 1431–1440.
  5. J Cui, J Yin, J Zheng, J Meng, M Liao, T Wu, S He, S Wei, Z Xie, H Wang, M Dresselhaus, Y Xie*, J Wu*,  C Lu*, X Zhang*. Supermolecule cucurbituril subnanoporous carbon supercapacitor(SCSCS). Nano Letters, 2021, 21 (5), 2156–2164.
  6. J Meng, Z Liu, X Liu, W Yang, L Wang, Y Li, Y Cao, X Zhang*, L Mai*. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen Journal of Materials Science & Technology, 2020, 66, 186-192.
  7. F Han, S Lv, Z Li, L Jin, B Fan*, J Zhang, R Zhang, X Zhang*, L Han, J Li*. Triple-synergistic 2D material- based dual-delivery antibiosis platform. NPG Asia Materials, 2020,12,15.
  8. J Ouyang†, X Ji†, X Zhang†, C Feng, Z Tang, N Kong, A Xie, J Wang, X Sui, L Deng, Y Liu, J S Kim, Y Cao, W Tao*. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2020, 117 (46), 28667-28677. (highly cited paper, Highlighted by: MRS Bulletin Materials News)
  9. H Zhou*, Z Wang, W Zhao, X Tong, X Jin, X Zhang*, Y Yu, H Liu, Y Ma, S Li, W Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chemical Engineering Journal, 2020, 403, 126307.
  10. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 1124.
  11. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 4777.
  12. J Meng, Q He, L Xu, X Zhang, F Liu, X Wang, Q Li, X Xu, G Zhang, C Niu, Z Identification of phase control of carbon-confined Nb2O5 nanoparticles towards high-performance lithium  storage.  Advanced Energy Materials, 2019, 9 (18), 1802695.
  13. J Wu, F Xu, S Li, Q, Liu, X Zhang, Q Liu, R Fu, D Wu. Porous polymers as multifunctional material platforms toward task‐specific applications. Advanced  Materials,  2019,  31(4),  1802922.  (Citation>145,  ESI Highly Cited Paper, Invited Paper)
  14. B Zheng, X Lin, X Zhang, D Wu, K Matyjaszewski. Emerging functional porous polymeric and carbonaceous materials for environment treatment and energy storage. Advanced Functional  Materials, 2019, 1907006. (Invited Paper)
  15. R Huang, X Chen, Y Dong, X Zhang*, Y Wei, Z Yang, W Li, Y Guo, J Liu, Z Yang*, H Wang*, L Jin*.

    MXene composite nanofibers for cell culture and tissue engineering. ACS Applied Bio Materials. 2020, 3(4), 2125-2131. 

  16. J Ouyang, C Feng, X Zhang, N, Kong, W. Tao. Black Phosphorus in Biomedical applications: Evolutionary Journey from Monoelemental Materials to Composite Materials. Accounts of Materials Research. 2021, 2, 7, 489–500. (Featured Cover Paper, ACS Editors` Choicechosen from the entire ACS portfolio).   

    Related micropatterned microfluidics studies:

    1)https://www.nature.com/articles/s41578-020-00247-y

    Imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission,material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment.

    1. Z Tang†, N Kong†, X Zhang†, Y Liu, P Hu, S Mou, P Liljeström, J Shi, W Tan, J S Kim, Y Cao, R Langer, K W. Leong, O C. Farokhzad, W Tao. A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860. (Featured Cover Paper, highly cited paper, accessed>19,000 times, Impact Factor:71.189)

     2)https://www.nature.com/articles/s41467-019-12462-5

    Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules

    1. M Chowdhury, W Zheng, S Kumari, J Heyman, X Zhang, P Dey, D Weitz, R Haag. Dendronized fluorosurfactants provide phenomenal droplet integrity to picolitre emulsions for therapeutics development. Nature Communications, 2019, 10, 4546 (Impact Factor:14.919).

    3) https://doi.org/10.1021/acsnano.0c02701

    An osmotic-pressure, pH, excretion, nutrition, gas, ionic-strength, flow-rate, and temperature (OPEN GIFT) microenvironment-controlled micropatterned microfluidic model (MMMM) for biomimetic in situ studies (BISS) in simulating the in vivo microenvironment to study in situ the stress applied to Giardia in the intestinal tract. 

    1. Y Wang, L Lu, G Zheng*, X Zhang*. Microenvironment-controlled micropatterned microfluidic model for biomimetic in-situ studies. ACS Nano, 2020, 14(8), 9861-9872. (Featured Cover Paper, Impact Factor:15.881).

    4) https://doi.org/10.1016/j.bios.2019.111597

    1. S Han†, Q Zhang†, X Zhang†, X Liu, L Lu, J Wei, Y Li, Y Wang, G A digital microfluidic diluter- based microalgal motion biosensor for marine pollution monitoring. Biosensors and Bioelectronics, 2019, 143, 111957 (Impact Factor:10.257).

    5)  https://doi.org/10.2144/btn-2019-0134 

    1. L Liu, N Xiang, Z Ni, X Huang, J Zheng, Y Wang, X Zhang*. Step Emulsification: High throughput production of monodisperse droplets. BioTechniques, 2020, 68 (3), 114-116. (Invited Expert Paper)

    6) https://doi.org/10.1016/j.nantod.2021.101152    https://authors.elsevier.com/a/1cv~x6DSyB6RP5

    1.  S Wang, Z Shen, Z Shen, Y Dong, Y Li, Y Cao, Y Zhang, S Guo, J Shuai, Y Yang, C Lin, M Guo, X Chen*, X Zhang*, Q Huang*. Machine-learning micropattern manufacturing. Nano Today, 2021, 38 (2021), 101152. (Impact Factor:20.722)

    7) https://doi.org/10.1016/j.bioactmat.2021.04.014

    1. Z Li†, X Zhang† J Ouyang, D Chu, F Han, L Shi, R Liu, Z Guo, G Gu, W Tao, L Jin, J Li. Ca2+-supplying black phosphorus-based scaffolds developed with microfluidic technology for osteogenesis. Bioactive materials, 2021, 6(11), 4053-4064. (Instant Impact Factor:14.093).         

    8) https://doi.org/10.1016/j.pmatsci.2020.100768 

    Microfluidic technology for Theranostics.

    1. J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Bionanomaterials. Progress in Materials Science, 2021, 118, 100768. (Impact Factor:39.58)

    9) https://doi.org/10.1007/s40820-021-00663-x

    1. M Chowdhury†, X Zhang, L Amini, A Faghani, A Singh, M Henneresse, R Haag. Functional Surfactants for Molecular Fishing, Capsule Creation, and Single-Cell Gene Expression.  Nano-Micro Letters, 2021, 13, 147. (Impact Factor:16.419)

     10) https://doi.org/10.1021/acs.analchem.1c00917

      1.  G Zheng, Q Gao, Y Jiang, L Lu, J Li,X Zhang, H Zhao, P Fan, Y Cui, F Gu, Y Wang.            Instrumentation-compact digital microfluidic (DMF) reaction interface extended  loop-mediated isothermal amplification (LAMP) for sample-to-answer testing of Vibrio parahaemolyticus. Analytical Chemistry, 2021, 93, 28, 9728–9736.

    11) https://doi.org/10.1016/j.marpolbul.2019.04.063  https://doi.org/10.1166/jnn.2019.16752   https://doi.org/10.1109/ICSENS.2010.5690979.

    1. Zhang, Q., Zhang, X., Zhang, X., Jiang, L., Yin, J., Zhang, P., Han, S., Wang, Y.& Zheng, G. A feedback-controlling digital microfluidic fluorimetric sensor device for simple and rapid detection of mercury (II) in costal seawater. Marine pollution bulletin, 2019, 144, 20-27.   https://doi.org/10.1016/j.marpolbul.2019.04.063
    2. R Yang, Z Gong, X Zhang, L Que. Single-walled carbon nanotubes (SWCNTs) and poly(3,4- ethylenedioxythiophene) nanocomposite microwire-based electronic biosensor fabricated  by  microlithography and layer-by-layer nanoassembly. Journal of Nanoscience and Nanotechnology, 2019,19(12), 7591-7595. https://doi.org/10.1166/jnn.2019.16752 

Dr. Xingcai Zhang, Harvard/MIT Research Fellow; Science Writer/Editorial (Advisory) Board Member for Springer Nature, Elsevier, Materials Today, Royal Society of Chemistry, Wiley; Nature Nano Ambassador with 5 STEM degrees/strong background in sustainable Nature-derived/inspired/mimetic materials for biomed/sensing/catalysis/energy/environment applications, with more than 100 high-impact journal publications in Nature Reviews Materials (featured cover paper), etc. https://scholar.google.com/citations?hl=en&user=2vDraMoAAAAJ&view_op=list_works&sortby=pubdate

https://scholar.harvard.edu/xingcaizhang 

https://orcid.org/0000-0001-7114-1095

Contact: Dr. Xingcai Zhang xingcai@mit.edu  chemmike1984@gmail.com +1-2253041387 wechat:drtea1

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Subscribe to the Topic

Biotechnology
Life Sciences > Biological Sciences > Biotechnology

Related Collections

With collections, you can get published faster and increase your visibility.

Applied Sciences

This collection highlights research and commentary in applied science. The range of topics is large, spanning all scientific disciplines, with the unifying factor being the goal to turn scientific knowledge into positive benefits for society.

Publishing Model: Open Access

Deadline: Ongoing