Micropatterned microfluidics: dendronized fluorosurfactants for highly stable emulsions  

We design surfactants that form robust microdroplets with improved high stability (in PCR thermal cycling) and resistance to inter-droplet transfer (of fluorescent dye salts, drugs, etc) using dendritic oligo-glycerol-based surfactants with a high degree of inter-and intramolecular hydrogen bonding.

Like Comment
Read the paper

Fluorosurfactant-stabilized microfluidic droplets are widely used as pico- to nanoliter volume reactors in chemistry and biology. However, current surfactants cannot completely prevent the inter-droplet transfer of small organic molecules encapsulated or produced inside the droplets. In addition, the microdroplets typically coalesce at temperatures higher than 80 °C. Therefore, the use of droplet-based platforms for ultrahigh-throughput combination drug screening and polymerase chain reaction (PCR)-based rare mutation detection has been limited. Here, we provide insights into designing surfactants that form robust microdroplets with improved stability and resistance to inter-droplet transfer. We used a panel of dendritic oligo-glycerol-based surfactants to demonstrate that a high degree of inter-and intramolecular hydrogen bonding, as well as the dendritic architecture, contribute to high droplet stability in PCR thermal cycling and minimize the inter-droplet transfer of the water-soluble fluorescent dye sodium fluorescein salt and the drug doxycycline. (Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat Commun 10, 4546 (2019). https://doi.org/10.1038/s41467-019-12462-5)

Fig 1 Synthesis of fluorosurfactants with dendritic glycerol head groups. PFPE tails of two different fluoro-chain lengths (M, L) were conjugated to the mono-glycerol (G) polar head (upper drawing, light blue) to create surfactants M-G and L-G; PFPE tails of three different molecular weights (H, M, L) were conjugated to dendritic tri-glycerol (dTG) polar head to create surfactants H-dTG, M-dTG, and L-dTG (lower drawing, blue). These surfactants orient at the interface (deep gray) of water (light red) and fluorinated oil (gray) to stabilize picolitre-volume (pL) water-in-oil (W/O) emulsion droplets, as depicted in the picture
Fig 2 Polar head group geometry dictates droplet stability. a Polydimethylsiloxane (PDMS) based microfluidic devices are used to prepare microdroplets containing PCR reagents. 

Fig 2 Polar head group geometry dictates droplet stability. b The three tri-glycerol (dTG)-based surfactants (H-dTG, M-dTG, L-dTG), the two mono-glycerol (G)-based surfactants (M-G, L-G), and the PEG600-based fluorosurfactant, PEG-PFPE2, were used to create droplets for stability testing (chemical structures in b). c Droplets produced using the tri-glycerol, the mono-glycerol, and the PEG600-based surfactants showed no merging during >24 h incubation at 4 °C (c showing pre-PCR droplets). d After 35 cycles of PCR, L-dTG-stabilized droplets showed almost no merging. In contrast, droplets generated using mono-glycerol (G)-based surfactants (M-G, L-G) merged completely during the PCR. Droplets stabilized with PEG-PFPE2 surfactant showed substantial merging (c depicting post-PCR droplets). Scale bar, 100 µm
Fig 3 Influence of dense hydrogen bond network on inter-droplet diffusion. a For each surfactant, we used parallel drop maker to create a mixture comprising equal amounts of PBS-only-droplets and PBS + sodium fluorescein salt-containing droplets. Confocal fluorescent imaging of droplets after 72 h incubation at 37 °C is shown in top panel. b We incubated these mixtures, took fluorescence images at the indicated time points, and then performed quantitative analysis of the fluorescence intensity of the 10 randomly selected PBS-only droplets. Box-plot demonstrates that dye was almost completely retained in droplets stabilized by M-dTG, while some transfer was detected in M-G droplets. PEG-PFPE2 surfactant-stabilized droplets showed substantial transfer (left to right). The box plots represent the median (center line), the interquartile range (box) and the non-outlier range (whisker). 
Fig 3 Influence of dense hydrogen bond network on inter-droplet diffusion. c A model representing the plausible inter- and intramolecular hydrogen bonding from M-dTG, M-G, and PEG-PFPE2 surfactants (left to right). The lines denote hydrogen bonding at the interface of oil and water. For PEG-PFPE2 surfactant, as there is no hydrogen bond donor, there is no inter- and intramolecular hydrogen bond present. Scale bars = 100 µm; a.u. = arbitrary units. Source data of Fig. 3b (middle panel) are provided as a Source Data file
Fig 4 Cell-based reporter system to test inter-droplet drug diffusion. a HEK 293 cells stably transfected with a doxycycline responsive GFP reporter construct (reporter cells) show no GFP expression in the absence of drugs and become highly fluorescent after 48 h incubation in the presence of 500 nM DOX-solution. b Homogeneous population of DOX-containing droplets and Reporter-cell-containing droplets was generated using a parallel drop maker that creates an equal number of droplets from two independent aqueous streams. 
Fig 4 Cell-based reporter system to test inter-droplet drug diffusion. c Cell-loading into droplets roughly follows Poisson predictions. We imaged 533 droplets immediately after cell encapsulation to determine cell occupancy. We used an input density of five cells per droplet volume and found that 83% of the droplets contained one or more cells. Therefore, with cells at this concentration, the parallel drop maker generates a mixed droplet population in which 42% droplets contain one or more cells, 50% contain only doxycycline, and 8% are empty. d Box-plot of droplet size distribution after 24, 48, and 72 h incubation at 37 °C demonstrates that the mean average droplet diameter remained constant (~75 µm) over the time course (n = 204–226 droplets for each time point). The box plots represent the median (center line), the interquartile range (box) and mean ± 1.5 x s.d. (whisker). e Viability of cells cultured in wells or in droplets. As a positive control we cultured cells at standard concentration in culture wells (CW–SC) (1 × 106 cells/ml). We used M-dTG and PEG-PFPE2 surfactants to generate cell encapsulated droplets and incubated droplets at 37 °C for the indicated times. We isolated cells from the droplets to perform live/dead assay using Calcein AM and Ethidium Homodimer-1 dyes based live/dead cell viability assay kit (Invitrogen). We counted ~500–2000 cells to estimate the cell survival rate at the indicated time points. Data are presented as mean ± s.d., n = 4 images from distinct areas. Source data of c–e are provided as a Source Data file
Fig 5 DOX-inducible GFP-reporter cells to quantify drug transfer. We used the parallel drop maker to generate homogenous mixtures in which 50% of the droplets contained DOX (at the indicated concentrations), 42% contained ≥1 cell, and 8% were empty. We incubated droplets at 37 °C for the indicated times, isolated the cells from the droplets, and quantified the GFP+ cells using flow cytometer. GFP intensity is plotted against forward scatter-area (FSC-A). For the positive control in bulk, we cultured the DOX-GFP-HEK 293 cells with DOX in six well plates using standard cell culture methods. For the Positive Control (Droplet), all droplets, including those with cells, contained DOX at the indicated concentration

Related micropatterned microfluidics studies:

1)https://www.nature.com/articles/s41578-020-00247-y

Imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission,material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment.

  1. Z Tang†, N Kong†, X Zhang†, Y Liu, P Hu, S Mou, P Liljeström, J Shi, W Tan, J S Kim, Y Cao, R Langer, K W. Leong, O C. Farokhzad, W Tao. A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860. (Featured Cover Paper, highly cited paper, accessed>20,000 times, Impact Factor:71.189)

 2)https://www.nature.com/articles/s41467-019-12462-5

Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules

  1. M Chowdhury, W Zheng, S Kumari, J Heyman, X Zhang, P Dey, D Weitz, R Haag. Dendronized fluorosurfactants provide phenomenal droplet integrity to picolitre emulsions for therapeutics development. Nature Communications, 2019, 10, 4546 (Impact Factor:14.919).

3) https://doi.org/10.1021/acsnano.0c02701

An osmotic-pressure, pH, excretion, nutrition, gas, ionic-strength, flow-rate, and temperature (OPEN GIFT) microenvironment-controlled micropatterned microfluidic model (MMMM) for biomimetic in situ studies (BISS) in simulating the in vivo microenvironment to study in situ the stress applied to Giardia in the intestinal tract. 

  1. Y Wang, L Lu, G Zheng*, X Zhang*. Microenvironment-controlled micropatterned microfluidic model for biomimetic in-situ studies. ACS Nano, 2020, 14(8), 9861-9872. (Featured Cover Paper, Impact Factor:15.881).

4) https://doi.org/10.1016/j.bios.2019.111597

  1. S Han†, Q Zhang†, X Zhang†, X Liu, L Lu, J Wei, Y Li, Y Wang, G Zheng. A digital microfluidic diluter- based microalgal motion biosensor for marine pollution monitoring. Biosensors and Bioelectronics, 2019, 143, 111957 (Impact Factor:10.257).

5)  https://doi.org/10.2144/btn-2019-0134 

  1. L Liu, N Xiang, Z Ni, X Huang, J Zheng, Y Wang, X Zhang*. Step Emulsification: High throughput production of monodisperse droplets. BioTechniques, 2020, 68 (3), 114-116. (Invited Expert Paper)

6) https://doi.org/10.1016/j.nantod.2021.101152    https://authors.elsevier.com/a/1cv~x6DSyB6RP5

  1.  S Wang, Z Shen, Z Shen, Y Dong, Y Li, Y Cao, Y Zhang, S Guo, J Shuai, Y Yang, C Lin, M Guo, X Chen*, X Zhang*, Q Huang*. Machine-learning micropattern manufacturing. Nano Today, 2021, 38 (2021), 101152. (Impact Factor:20.722)

7) https://doi.org/10.1016/j.bioactmat.2021.04.014

  1. Z Li†, X Zhang† J Ouyang, D Chu, F Han, L Shi, R Liu, Z Guo, G Gu, W Tao, L Jin, J Li. Ca2+-supplying black phosphorus-based scaffolds developed with microfluidic technology for osteogenesis. Bioactive materials, 2021, 6(11), 4053-4064. (Impact Factor:14.593).         

8) https://doi.org/10.1016/j.pmatsci.2020.100768 

Microfluidic technology for Theranostics.

  1. J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Bionanomaterials. Progress in Materials Science, 2021, 118, 100768. (Impact Factor:39.58)

9) https://doi.org/10.1007/s40820-021-00663-x

  1. M Chowdhury†, X Zhang, L Amini, A Faghani, A Singh, M Henneresse, R Haag. Functional Surfactants for Molecular Fishing, Capsule Creation, and Single-Cell Gene Expression.  Nano-Micro Letters, 2021, 13, 147. (Impact Factor:16.419)

 10) https://doi.org/10.1021/acs.analchem.1c00917

  1.  G Zheng, Q Gao, Y Jiang, L Lu, J Li,X Zhang, H Zhao, P Fan, Y Cui, F Gu, Y Wang.            Instrumentation-compact digital microfluidic (DMF) reaction interface extended  loop-mediated isothermal amplification (LAMP) for sample-to-answer testing of Vibrio parahaemolyticus. Analytical Chemistry, 2021, 93, 28, 9728–9736.

11)https://doi.org/10.1016/j.pmatsci.2020.100768 

  1. Y Li*, B Liu*, X Zhang*. Wettability-patterned microchips for emerging biomedical materials and technologies. Materials Today 2021, 870 https://doi.org/10.1016/j.mattod.2021.10.008.

12) https://doi.org/10.1021/acsnano.0c02701

  1. L Liu, M Bi, Y Wang, J Liu, X Jiang, Z Xu, X Zhang*. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale, 2021, 6195,   (Nanoscale Young Investigator Award Invited Paper)

13) https://doi.org/10.1021/acsnano.0c02701

  1. C Kim, S Hong, D Shin, S An, X Zhang*, W Jhe*. Sorting gold and sand (silica) using atomic force microscope-based dielectrophoresis. Nano-Micro Letters, 2021, 9049 (in press).

14) https://doi.org/10.1021/acsnano.0c02701

  1. Nature Microbiology, 2021, NMICROBIOL-21092363 (under editorial consideration).

15)https://doi.org/10.1021/acsami.1c13469

F Huang, Y Weng, Y Lin, X Zhang, Y Wang, S Chen. Wetting-Enhanced Structural Color for Convenient and Reversible Encryption of Optical Information. ACS Applied Materials & Interfaces, 2021, 13 (35), 42276–42286.

16) https://doi.org/10.1021/acs.jafc.9b02028

  1. X Chen, Y Chen, L Zou, X Zhang, Y Dong, J Tang, D McClements, W Liu. Plant-based Nanoparticles Consisting of a Protein Core and Multilayer Phospholipid Shell: Fabrication, Stability, and Foamability. Journal of Agricultural and Food Chemistry, 2019, 67 (23), 6574-6584.

17) https://doi.org/10.1016/j.marpolbul.2019.04.063 

   1. Zhang, Q., Zhang, X., Zhang, X., Jiang, L., Yin, J., Zhang, P., Han, S., Wang, Y.& Zheng, G. A feedback-        controlling digital microfluidic fluorimetric sensor device for simple and rapid detection of mercury (II) in costal seawater. Marine pollution bulletin, 2019, 144, 20-27.   

18) https://doi.org/10.1166/jnn.2019.16752   https://doi.org/10.1109/ICSENS.2010.5690979.

  1. R Yang, Z Gong, X Zhang, L Que. Single-walled carbon nanotubes (SWCNTs) and poly(3,4- ethylenedioxythiophene) nanocomposite microwire-based electronic biosensor fabricated  by  microlithography and layer-by-layer nanoassembly. Journal of Nanoscience and Nanotechnology, 2019,19(12), 7591-7595. https://doi.org/10.1166/jnn.2019.16752 

Related reading:https://orcid.org/0000-0001-7114-1095  

https://www.nature.com/articles/s41467-021-25075-8

https://www.nature.com/articles/s41467-021-24961-5

https://www.nature.com/articles/s41467-021-21436-5  

https://www.nature.com/articles/s41578-020-00247-y 

https://www.nature.com/articles/s41467-019-12462-5

https://bioengineeringcommunity.nature.com/posts/tackling-covid-19-with-materials-science  https://bioengineeringcommunity.nature.com/posts/micropatterned-microfluidics-dendronized-fluorosurfactants-for-highly-stable-emulsions https://bioengineeringcommunity.nature.com/posts/nature-derived-2-dimensional-materials-for-cancer-therapy-and-sustainable-solutions https://bioengineeringcommunity.nature.com/posts/multi-targeted-reactive-oxygen-species-burst-for-cancer-therapy

https://bioengineeringcommunity.nature.com/posts/aladdin-magic-mat-non-printed-integrated-circuit-textile-for-wireless-theranostics

Related Nanomedicine/Cancer Theranostics works:

  1. D Gao, T Chen, Y Han, S Chen, Y Wang, X Guo, H Wang, X Chen, M Guo, Y Zhang, G Hong, X Zhang*, Z Tian*, Z Yang*. Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-independent Synergistic Photothermal-thermodynamic Therapy. Nano-Micro Letters, 2021,13, 99. (Featured Cover Paper)
  2. Y Yang, X Wei, N Zhang*, J Zheng, Q Wen, X Luo, C Lee, X Liu, X Zhang*, J Chen, C Tao, W Zhang*, X Fan*. A non-printed integrated-circuit textile for wireless theranostics. Nature Communications. 2021, 12, 4876.
  3. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong,* X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 1124.
  4. N Kong, H Zhang, C Feng, C Liu, Y Xiao, X Zhang, L Mei, J S Kim, W Tao, X Ji. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nature Communications. 2021, 12, 4777.
  5. Z Tang†, N Kong†, X. Zhang†, Y Liu, P Hu, S Mou, P Liljeström, J Shi, W Tan, J S Kim, Y Cao, R Langer,  K W. Leong, O C. Farokhzad, W Tao. A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860. (Featured Cover Paper, highly cited paper, accessed>20,000 times) 
  6. Y Wang, D Gao, Y Liu, X Guo, S Chen, L Zeng, J Ma, X Zhang*, Z Tian*, Z Yang*. Immunogenic-Cell-Killing and Immunosuppression-Inhibiting Nanomedicine. Bioactive Materials, 2020, 6 (6), 1513-1527.
  7. J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Progress in Materials Science, 2021, 118, 100768.
  8. Z Yang, D Gao, X Guo, L Jin, J Zhang, Y Wang, S Chen, X Zheng, L Zeng, M Guo, X Zhang*, Z Tian*. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged ACS Nano, 2020, 14, 12, 17442-17457.
  9. D Wei, Y Yu, Y Huang,1 Y Jiang, Y Zhao, Z Nie, F Wang, W Ma, Z Yu, Y Huang, X Zhang, Z Liu, X Zhang, H Xiao. A Near-Infrared-II Polymer with Tandem Fluophores Demonstrates Superior Biodegradability for Simultaneous Drug Tracking and Treatment Efficacy Feedback. ACS Nano, 2021, 15 (3), 5428–5438.
  10. D Wei, Y Yu, X Zhang, Y Wang, H Chen, Y Zhao, F Wang, G Rong, W Wang, X Kang, J Cai, Z Wang, J Yin, M Hanif, Y Sun, G Zha, L Li, G Nie, H Xiao*. Breaking down the intracellular redox balance with diselenium nanoparticles for maximizing chemotherapy efficacy on patient-derived xenograft models. ACS Nano, 2020, 14, 12, 16984-16996.
  11. Z Lei, W Zhu, X Zhang, X Wang, P Wu. Bio-inspired ionic skin for theranostics hydrogel. Advanced Functional Materials, 2020, 2008020.
  12. D Gao, X Guo, X Zhang*, S Chen, Y Wang, T Chen, G Huang, Y Gao, Z Tian*, Z Yang*. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Materials Today Bio. 2019, 5,100035. (Invited Paper, ESI highly cited paper, open access with a fee waiver, 99.983% excellence, 2nd most highly cited paper of Materials Today Bio)
  13. J Ouyang†, X Ji†, X Zhang†, C Feng, Z Tang, N Kong, A Xie, J Wang, X Sui, L Deng, Y Liu, J S Kim, Y Cao, W Tao*. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2020, 117 (46), 28667-28677. (highly cited paper, Highlighted by: MRS Bulletin Materials News)
  14. G Parekh, Y Shi, J Zheng, X Zhang*, S Leporatti. Nano-carriers for targeted delivery and biomedical imaging enhancement. Therapeutic Delivery, 2018, 9(6), 451-468.
  15.  C Liu, S Sun, Q Feng, Y Wu, N Kong, Z Yu, J Yao, X Zhang, W Chen, Z Tang,  Y Xiao, X Huang, A Lv, Y Cao, A Wu, T Xie, W Tao. Arsenene nanodot: a new-concept arsenical drug with selective killing effects for solid tumor therapy. Advanced Materials, 2021, 2102054
  16. W Y Kim, M Won, S Koo, X Zhang, J S Kim. Mitochondrial H2Sn-Mediated Anti-Inflammatory Theranostics. Nano-Micro Letters,  2021, 13, 168.
  17. J Li, S Song, J Meng, Z Li,  X Liu, L Tan, Y Zheng, C Li, K Yeung, Z Cui, Y Liang, S Zhu, X Zhang*, S Wu. 2D MOF periodontitis photodynamic ion therapy. Journal of the American Chemical Society, DOI:10.1021/jacs.1c07875.
  18. D Zhong,  D Zhang, W Chen, J He, C Ren, X Zhang, N Kong, W Tao*, M Zhou*. Orally Deliverable Strategy Based on Microalgal Biomass for Intestinal Diseases Treatment. Science Advances, abi9265, accepted.

Other Related Nature-derived/inspired materials/tea works:

  1.  C Liu, S Sun, Q Feng, Y Wu, N Kong, Z Yu, J Yao, X Zhang, W Chen, Z Tang,  Y Xiao, X Huang, A Lv, Y Cao, A Wu, T Xie, W Tao. Arsenene nanodot: a new-concept arsenical drug with selective killing effects for solid tumor therapy. Advanced Materials. 2021, 2102054
  2. Y Xie, J Yin, J Zheng, L Wang, J Wu, M Dresselhaus, X Zhang*. Synergistic cobalt sulfide/eggshell membrane carbon ACS Applied Materials & Interfaces. 2019, 11 (35), 32244-32250.
  3. N Kong, H Zhang, C Feng, C Liu, Y Xiao, X Zhang, L Mei, J S Kim, W Tao, X Ji. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nature Communications. 2021, 12, 4777.
  4. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021,12,1124.
  5. Z Li, D Chu, Y Gao, L Jin*, X Zhang*, W Cui, J Li*. Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite Materials Today Advances. 2019,3,100014. (Invited open-access paper among most highly cited paper of Materials Today Advances)
  6. Z Lei, W Zhu, X Zhang, X Wang, P Wu. Bio-inspired ionic skin for theranostics hydrogel. Advanced Functional Materials, 2020, 2008020.
  7. L Jin, J Li, L Liu*, Z Wang*, X Zhang*. Facile synthesis of carbon dots with superior sensing. Applied Nanoscience, 2018, 755(3), 1-8.
  8. J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Progress in Materials Science, 2021, 118, 100768.
  9. Z Yang, D Gao, X Guo, L Jin, J Zhang, Y Wang, S Chen, X Zheng, L Zeng, M Guo, X Zhang*, Z Tian*. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged ACS Nano, 2020, 14, 12, 17442-17457.
  10. Y Wang, L Lu, G Zheng*, X Zhang*. Microenvironment-controlled micropatterned microfluidic model for biomimetic in-situ studies. ACS Nano, 2020, 14(8), 9861-9872. (Featured Cover Paper)
  11. Z Li†, X Zhang†, Z Guo, L Shi, L Jin, L Zhu, X Cai, J Zhang, Y Liu, Y Zhang, J Li. Nature-Derived Bionanomaterials for sustained release of 5-fluorouracil to inhibit subconjunctival fibrosis. Materials Today Advances, 2021, 11, 100150.  
  12. X Chen, Y Chen, L Zou, X Zhang, Y Dong, J Tang, D McClements, W Liu. Plant-based Nanoparticles Consisting of a Protein Core and Multilayer Phospholipid Shell: Fabrication, Stability, and  Journal of Agricultural and Food Chemistry, 2019, 67 (23), 6574-6584.
  13. P Tang, D Shen, Y Xu, X Zhang*, J Shi, J Yin*. Effect of fermentation conditions and the tenderness of tea leaves on the chemical components and sensory quality of fermented juice. Journal of Chemistry, 2018, 4312875,1-7.
  14. X Zhang*. Tea and cancer prevention. Journal of Cancer Research Updates, 2015, 4 (2), 65-73.
  15. Q Zhang, W Li, K Li, H Nan, C Shi, Y Zhang, Z Dai, Y Lin, X Yang, Y Tong, D Zhang, C Lu, L Feng, C Wang, X Liu, J Huang, W Jiang, X Wang, X Zhang, Eichler, Z. Liu, L. Gao. The Chromosome-Level Reference Genome of Tea Tree Unveils Recent Bursts of Non-autonomous LTR Retrotransposons in Driving Genome Size Evolution. Molecular plant 2020,13 (7), 935-938.
  16. Y Yang†, P Jin†, X Zhang†, N Ravichandran, H Ying, C Yu, H Ying, Y Xu, J Yin, K Wang, M Wu, Q New epigallocatechin gallate (EGCG) nanocomplexes co-assembled with 3-mercapto-1-hexanol and ß- lactoglobulin for improvement of antitumor activity. Journal of Biomedical Nanotechnology, 2017,13 (7), 805-814.
  17. X Zhang*, G Parekh, B Guo, X Huang, Y Dong, W Han, X Chen, G Polyphenol and Self-Assembly: Metal Polyphenol Nanonetwork for Drug Delivery and Biomedical Applications. Future Drug Discovery, 2019, 1 (1), FDD7. (Invited open-access paper with a fee waiver, most cited paper of the journal)

Related 2-dimentional/carbon materials works:

  1. Y Zheng, H Wei, P Liang, X Xu, X Zhang, H Li, C Zhang, C Hu, X Zhang, B Lei, W Wong, Y Liu, J Zhuang. Near-infrared-excited multicolor afterglow in carbon dots-based room-temperature phosphorescent materials. Angewandte Chemie, 2021, 202108696.  
  2. G Li, C Liu, X Zhang, P Luo, G Lin, W Jiang. Highly photoluminescent carbon dots-based immunosensors for ultrasensitive detection of aflatoxin M1 residues in milk. Food Chemistry. 2021, 355, 129443.
  3. L Jin, X Guo, D Gao, G Tan, N Du, X Wang, Y Zhang, Z Yang*, X Zhang*. NIR-responsive MXene nanobelts for wound NPG Asia Materials. 2021,13, 24. Selected for the “Special Issue on Biomaterials and Health-care related Materials”.
  4. J Meng, J Li, J Liu, X Zhang*, G Jiang*, L Ma, Z Hu, S Xi, Y Zhao, M Yan, P Wang, X Liu, Q Li, J Liu, T Wu, L Mai*. Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from  Doped ZnO  Solid ACS Central Science, 2020, 6(8), 1431–1440.
  5. J Cui, J Yin, J Zheng, J Meng, M Liao, T Wu, S He, S Wei, Z Xie, H Wang, M Dresselhaus, Y Xie*, J Wu*,  C Lu*, X Zhang*. Supermolecule cucurbituril subnanoporous carbon supercapacitor(SCSCS). Nano Letters, 2021, 21 (5), 2156–2164.
  6. J Meng, Z Liu, X Liu, W Yang, L Wang, Y Li, Y Cao, X Zhang*, L Mai*. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen Journal of Materials Science & Technology, 2020, 66, 186-192.
  7. F Han, S Lv, Z Li, L Jin, B Fan*, J Zhang, R Zhang, X Zhang*, L Han, J Li*. Triple-synergistic 2D material- based dual-delivery antibiosis platform. NPG Asia Materials, 2020,12,15.
  8. J Ouyang†, X Ji†, X Zhang†, C Feng, Z Tang, N Kong, A Xie, J Wang, X Sui, L Deng, Y Liu, J S Kim, Y Cao, W Tao*. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2020, 117 (46), 28667-28677. (highly cited paper, Highlighted by: MRS Bulletin Materials News)
  9. H Zhou*, Z Wang, W Zhao, X Tong, X Jin, X Zhang*, Y Yu, H Liu, Y Ma, S Li, W Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chemical Engineering Journal, 2020, 403, 126307.
  10. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 1124.
  11. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 4777.
  12. J Meng, Q He, L Xu, X Zhang, F Liu, X Wang, Q Li, X Xu, G Zhang, C Niu, Z Identification of phase control of carbon-confined Nb2O5 nanoparticles towards high-performance lithium  storage.  Advanced Energy Materials, 2019, 9 (18), 1802695.
  13. J Wu, F Xu, S Li, Q, Liu, X Zhang, Q Liu, R Fu, D Wu. Porous polymers as multifunctional material platforms toward task‐specific applications. Advanced  Materials,  2019,  31(4),  1802922.  (Citation>145,  ESI Highly Cited Paper, Invited Paper)
  14. B Zheng, X Lin, X Zhang, D Wu, K Matyjaszewski. Emerging functional porous polymeric and carbonaceous materials for environment treatment and energy storage. Advanced Functional  Materials, 2019, 1907006. (Invited Paper)
  15. R Huang, X Chen, Y Dong, X Zhang*, Y Wei, Z Yang, W Li, Y Guo, J Liu, Z Yang*, H Wang*, L Jin*.

    MXene composite nanofibers for cell culture and tissue engineering. ACS Applied Bio Materials. 2020, 3(4), 2125-2131. 

  16. J Ouyang, C Feng, X Zhang, N, Kong, W. Tao. Black Phosphorus in Biomedical applications: Evolutionary Journey from Monoelemental Materials to Composite Materials. Accounts of Materials Research. 2021, 2, 7, 489–500. (Featured Cover Paper, ACS Editors` Choicechosen from the entire ACS portfolio).

Dr. Xingcai Zhang, Harvard/MIT Research Fellow; Science Writer/Editorial (Advisory) Board Member for Springer Nature, Elsevier, Materials Today, Royal Society of Chemistry, Wiley; Nature Nano Ambassador with 5 STEM degrees/strong background in sustainable Nature-derived/inspired/mimetic materials for biomed/sensing/catalysis/energy/environment applications, with more than 100 high-impact journal publications in Nature Reviews Materials (featured cover paper), etc. https://scholar.google.com/citations?hl=en&user=2vDraMoAAAAJ&view_op=list_works&sortby=pubdate

https://scholar.harvard.edu/xingcaizhang 

https://orcid.org/0000-0001-7114-1095

Contact: Dr. Xingcai Zhang xingcai@mit.edu  chemmike1984@gmail.com +1-2253041387 wechat:drtea1

Xingcai Zhang

Harvard/MIT Research Fellow, Harvard University

Sustainable Nature-inspired/derived/mimetic materials, nanomaterials, biomedicine, lab-on-chip, 2D/C/porous/polymer materials, tea. Dr. Xingcai Zhang, Harvard/MIT Research Fellow; Science Writer/Editorial (Advisory) Board Member for Springer Nature, Elsevier, Materials Today, Royal Society of Chemistry, Wiley; Nature Nano Ambassador with 5 STEM degrees/strong background in sustainable Nature-derived/inspired/mimetic materials for biomed/sensing/catalysis/energy/environment applications, with more than 100 high-impact journal publications in Nature Reviews Materials (featured cover paper), etc. https://scholar.google.com/citations?hl=en&user=2vDraMoAAAAJ&view_op=list_works&sortby=pubdate

https://orcid.org/0000-0001-7114-1095

https://scholar.harvard.edu/xingcaizhang Contact: xingcai@mit.edu +1-2253041387 wechat:drtea1