Materials science (imaging, microfluidics, antiviral drugs, vaccines, personal protective equipment, organoids, organs-on-a-chip, medical equipment, etc.) contributes to SARS-CoV-2 research and provides tools for the understanding, protection, detection, and treatment of future viral diseases.
In our recent Nature Reviews Materials featured cover paper (A materials-science perspective on tackling COVID-19.Nat Rev Mater5,847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y), we discussed the ongoing SARS-CoV-2 pandemic that highlights the importance of materials science in providing tools and technologies for antiviral research and treatment development. In this Review, we discuss previous efforts in materials science in developing imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission, as well as material platforms for the detection of viruses and the delivery of antiviral drugs and vaccines. We highlight the contribution of materials science to the manufacturing of personal protective equipment and to the design of simple, accurate and low-cost virus-detection devices. We then investigate future possibilities of materials science in antiviral research and treatment development, examining the role of materials in antiviral-drug design, including the importance of synthetic material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment. Materials-science-based technologies not only contribute to the ongoing SARS-CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.
Dr. Xingcai Zhang, Harvard/MIT Research Fellow; Science Writer/Editorial (Advisory) Board Member for Springer Nature, Elsevier, Materials Today, Royal Society of Chemistry, Wiley; Nature Nano Ambassador with 5 STEM degrees/strong background in sustainable Nature-derived/inspired/mimetic materials for biomed/sensing/catalysis/energy/environment applications, with around 100 high-impact journal publications in Nature Reviews Materials (featured cover paper), etc.https://scholar.google.com/citations?hl=en&user=2vDraMoAAAAJ&view_op=list_works&sortby=pubdate
Sustainable Nature-inspired/dervied/mimetic materials, nanomaterials, biomedicine, lab-on-chip, 2D/C/porous/polymer materials, tea.
Dr. Xingcai Zhang, Harvard/MIT Research Fellow; Science Writer/Editorial (Advisory) Board Member for Springer Nature, Elsevier, Materials Today, Royal Society of Chemistry, Wiley; Nature Nano Ambassador with 5 STEM degrees/strong background in sustainable Nature-derived/inspired/mimetic materials for biomed/sensing/catalysis/energy/environment applications, with around 100 high-impact journal publications in Nature Reviews Materials (featured cover paper), etc. https://scholar.google.com/citations?hl=en&user=2vDraMoAAAAJ&view_op=list_works&sortby=pubdatehttps://orcid.org/0000-0001-7114-1095
Contact: xingcai@mit.edu +1-2253041387 wechat:drtea1
Register to Nature Portfolio Bioengineering Community
The Nature Portfolio Bioengineering Community is a community blog for readers and authors of Nature Research journals, including Nature Biomedical Engineering, Nature Biotechnology, Nature Communications, Nature Medicine, and others. Become a member, and contribute with research news and stories.